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Abstract. We investigate the estimation of spectral parameters of optical fields by digital 
autocorrelation of photon counting fluctuations, taking into account the correlations that 
exist between readings of the autocorrelator channels. A general expression for the co- 
variance of the normalized intensity autocorrelation estimators is derived for a gaussian 
field with general lineshape. Two estimation schemes are outlined, the maximum likelihood 
and the least-squares. Dependence of the estimation accuracy on the channel correlations 
and the system parameters is discussed. 

1. Introduction 

The methods of photon correlation spectroscopy have recently been a subject of great 
interest (for a review, see Pike and Jakeman 1973). Several authors (Jakeman and Pike 
1968, Jakeman et a1 1971, Degiorgio and Lastovka 1971, Kelly 1971) have investigated 
the problem of the statistical accuracy of these methods when applied to estimate the 
spectral linewidth of gaussian-lorentzian light. Jakeman et al (197 1) in an exhaustive 
theoretical study have determined an appropriate weighting for a least-squares fitting 
procedure under the assumption that the readings ofthe various channels areuncorrelated. 
This assumption, they have noted, is reasonable when the average counting rate is 
sufficiently small or when the sample time interval (the resolution time of the instrument) 
is sufficiently longer than the spectral coherence time. In practice, these conditions are 
not always satisfied. The results of Jakeman et al (1971) show that the optimum sample 
time should be much shorter than the coherence time especially when the counting rates 
are high. This has also been confirmed by computer simulated experiments (Swinney 
1973, private communication). Moreover, in many applications, such as those involving 
laser sources, the counting rates are not sufficiently small to justify the assumption that 
the channels are uncorrelated. The new technique of local oscillator scattering, intro- 
duced by light scattering experimentalists to circumvent the trouble with parasitic 
scattering, implies that new experiments will be performed at very high counting rates. 

In this paper, the overall problem of statistical errors in photon counting spec- 
troscopy is formulated in a more general form than is to be found in earlier papers on 
the subject. We calculate the channel correlations in the general case of a field that is 
not necessarily lorentzian, and study the optimum data processing schemes for estimating 
one or several parameters in the situations when the channels are not necessarily 
uncorrelated. The interest in a general light spectrum stems from the fact that the light 
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scattered from binary liquid mixtures or from biological cells or macromolecules (two 
subjects of recent great interest) is not lorentzian. 

In the present work, several assumptions are used. (i) The sample time interval is 
much shorter than the field’s coherence time. (ii) The total time of the experiment is 
much longer than the coherence time. This is valid in most practical applications (if 
the total time of the experiment is 50-500 s and the coherence time is 0.5 ps-5 ms, then 
their ratio is of the order of 104-109). (iii) The optical field is stationary, cross-spectrally 
pure and gaussian. 

The effects of clipping, scaling, dead time and of the finite aperture are not considered 
here. However, the effect of biasing is included. 

Our estimation procedure is based on the calculation of the normalized (biased) 
estimators 

where the total available time Tis  divided into N intervals each of width T,, n(m) is the 
number of counts in the mth interval, and L is the number of channels. If the coherence 
time is o,, then the assumptions (i) and (ii) above mean that T >> o, >> T, . 

In 9 2, we study the statistical properties of the set {&} defined above. In 9 3, two data 
processing schemes are described, the maximum likelihood (ML) estimation and the 
least-squares (LS) estimation. This involves demonstrating the estimation procedure and 
calculating the estimation error (or accuracy). In 0 4, examples are given and the results 
are compared with those of Jakeman et aI (1971). The final section is devoted to dis- 
cussions of the general conclusions of this work. 

2. Statistical properties of the normalized intensity autocorrelation estimators {g,} 

In order to simplify the expressions of the statistical moments of @,}, we follow the 
approach of Jakeman et a1 (1971) and define the denominator of (1) as 

N 

iz = ( 1 / N )  c n(m). 
m =  1 

We also define 

The statistic A, which is measurable, is an unbiased estimator of ii, which is unknown, ie 

E { A )  = ii, (4) 

where E is the expectation value. Also, the statistic to, is an unbiased estimator for the 
normalized intensity coherence function go, which, from now on, we shall call g,, 

m o l }  = g,, 1 # 0. (5 1 
However, do l  is not measurable because ii is not precisely known. Fortunately, because 
N is very large, A has a value very close to that of ii and also to, is approximately equal 
to g,. This is used in (1) by expanding A around ii and go, around g, and thus getting 

dl = d o ,  + g, [ - 2 ( x) A - i i  + 3 (?) A- i i  * - 2 ( t3-i (,)I tor -g ,  
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We are now in a position to study the statistical moments of gf by using (6) instead of (1). 
By taking the expectation value of if as given by (6) we find that E l  is a biased estimator 
of g,. However, the bias terms can be shown to be proportional to (T  W ) -  where T W 
is the number of coherence lengths in an observation time (W = zc- ' is the bandwidth). 
On the other hand, we will see that the standard deviation of df (the square root of the 
variance) is proportional to (TW)-'I2. As we assume that TW >> 1, it is reasonable to 
assume that g l  is an unbiased estimator of g,,  ie 

E{tJ = g,. (7) 

(8) 
By using (6) and neglecting terms of higher orders in [(A -ii)/ii] and [(go[ -gf)/gf], we get 

The covariance between gf and & is defined as 

= cOv{df 9 gk} = E{gfgk} - E{gl)E{gk). 

In (14-17) X, y ,  z and U are related to ~ ( z )  by 
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Thus, we have found an expression for the covariance of the set of estimators {&} as a 
function of x(T,) of the optical field. It is to be remembered that this expression is not 
valid when either T, or Tk or both are zero. In such cases, additional terms have to be 
included, but these cases are of no interest to us here. 

A very important special type of optical field is that which is quasimonochromatic 
and has a lorentzian spectrum. In this case, 

xi = ~ X P (  - Ixil) exp( - ioo~, ) ,  (22) 
where x, = To,, r = Wis the bandwidth and oo is the central frequency. By substituting 
in the above general expression we get 

Alk = ( T W ) -  '(?+ Ixl-xkI) exp(-21x,-xkl)-($+ XI +xk) exp[ -2(x, + xk)] 

2 
nC 

'i' 
+4(1 + 1x1 -xkl) exp[ -(XI + xk)- IxI-xkl] +_ {exp( -21xf-xkl) 

from which the variance is 

(3 + 2x,) exp( - 4x,) + 4 exp( - 2x,) 

1 2 1 
nC nCn 

+ _ [ I  + e x p ( - 2 ~ , ) ] ~ + ~ [ 1 + e x p ( - 2 x , ) ]  , 

which is the same as the expression derived by Jakeman et a1 (1971). It is to be noted 
that if the count rate ii is very small, the last term in (23) dominates and {g,} are uncor- 
related. On the other hand, if fi is large, the matrix A can be very correlated. 

3. Optimum processing of data 

In this section we are concerned with the problem of finding the best estimates of para- 
meters of the light field spectrum given the set of observations { E I ) ,  1 = 1, . . . , L. We 
examine two methods, the maximum likelihood (ML) estimation and the method of 
least-squares (LS). 

3.1. Maximum likelihood estimator 

In order to find the ML estimator, the joint probability distribution of the set of statistics 
{&} has to be found. This is, in general, an extremely difficult task. However, fortunately, 
in most practical applications TW is a very large number (104-109), and each of the 
statistics {E,} is effectively the sum of a very large number of independent components 
and therefore it seems reasonable to use the central limit theorem and conclude that 
{Sf} has, approximately, a multivariate gaussian distribution. Adopting this assumption, 
we now have an expression for the joint probability distribution P({E, ] ) ,  because we 
have already found expressions for the means and the covariance (equations (7), (9), 
(12), (13)). 
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Let the parameters to be estimated be 8 = (el , .  . . , Os), and the ML estimates be 
8 = (e,, . . . , Os), then 8 is the value of 8 which makes P ( { & } )  maximum. Using the multi- 
variate gaussianexpression, taking thelogarithm and using the identity In det A = Tr In A, 
where A is the covariance matrix whose elements are { Alk},  we are led to the minimization 
problem 

(25) 

A A  

min{i Tr In A(@) + i[g-g(e)lTA- [g-g(8)]} 
e 

where g -g is the vector whose components are {& -gl}. This minimization problem 
can be solved by finding the value of 8 which makes the first derivatives with respect to 
each of the components of 0 vanish, ie 

This set of S nonlinear equations in S unknowns 8,, . . . , &, can, in general be solved 
numerically (eg using the Newton-Raphson method) and 6 can be determined. 

In order to calculate the resulting estimation errors we find the variances of the 
estimates {e,}. This can be obtained by making use of the fact that T W is very large and 
therefore the variances of its ML estimators are given by (see Mood and Graybill 1963, 
theorem 10.8) 

var O j  = [ R - ' ] ~ ~ ,  

where R is the matrix whose elements are 

and P is the multivariate normal distribution which when substituted in (28) gives 
approximately 

(when terms of order (TW)- '  are neglected). The case S = 1 gives simply 

var(8) = ( -A FeT - 1 g) - ' 
Thus, the ML estimators 6 are given by solving the set of nonlinear equations (26) and 
the error is given by (27) and (29). This holds good provided that our assumption of a 
gaussian distribution is justifiable. It may be argued that the central limit theorem is 
least accurate in the tails of the distribution which may contribute significantly in (28) 
when the logarithm is taken. Hence, the expression of the error may not be very accurate. 
However, it is not the error that we are interested in estimating with maximum accuracy ; 
it is rather the parameters 8 themselves which (26) can supply with good accuracy. 
Yet (27) and (29) give a reasonable approximation for the accuracy of ML estimation. 
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3.2. Least-squares method 

The square error is written as 
L 

e = c i u i - g 1 ( ~ ~ l 2 1  
1=1 

where l1 are weighting numbers to be chosen later. The LS estimate 8 is the value of 8 
which makes e a minimum. By equating to zero the first derivatives with respect to each 
of the parameters e,, we get S equations 

This, in principle, determines 6' except that the weights are not yet known. We next 
find expressions for the variances of 8. This can be done by linearization. Expanding 
gi(8)  around 8, we obtain S linear equations in os-6s, which can be solved and from 
which 

(32) var(Bs) = 1 ~ l ~ k f s f ~ A l k  > 
I , k  

where 

and F- is the inverse of the matrix F whose elements are 

Given that it is of equal importance to estimate correctly each of e,, the optimum weights 
ll are those which minimize the sum of the variances of the estimates, ie 

Of course, another set of weights may be included to account for the importance of 
estimating the various parameters. . 

Thus two steps have to be followed in order to obtain the LS estimates; the values of 
{cl} that minimize (35) have to be determined, and the set of nonlinear equations (31) 
have to be solved for 8. The estimation accuracies are given by (32). 

If only one parameter is to be estimated, S = 1, the estimation accuracy is given by 

3.3. Comparison between the M L  and LS estimates 

The ML and LS estimation methods are equivalent when the observations are uncorrelated. 
In this case the set of equations (27) and (29) and the set (32), (33), (34) and (35) both give 
the same result. When the observations are correlated, the two methods are different. 
The LS method is more conservative and it makes no use of the knowledge that the 
observations are approximately normal, thus it gives larger errors. It also involves 
longer computations (to solve the optimization problem). Hence, it seems that, for 
very large TW it is better to use the ML method. 
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4. Examples 

In this section, we use the results of the previous sections to find the accuracy of estimating 
parameters of some spectral distributions of practical importance, and also demonstrate 
numerically the effect of taking into account the channel correlations. 

4.1. Lineshape with one parameter 

We consider the problem of estimating the spectral width of a light field with lorentzian 
lineshape, ie 

(37) 

and r is to be estimated. In this example S = 1. The covariance matrix I \ [ k  has already 
been calculated and it is given by (23). 

g, = 1 + exp( - 2riTli), 

4.1 . I .  M I ,  estimator. Taking 8 = r and substituting (37) in (30), we get 

where 
d, = x! exp( - 2x1), x I  = riTll. 

4.1.2. LS estimator. Similarly by substituting (37) in (39, we get 

The values of (5,) which minimize (40) are given by 

if = (B-  1 ) 1 , 1 3  

where is the matrix whose elements are 
P l , k  = dk(dk6k,l + d l A L , k - d l A l , k ) *  

It is easy to see that in the limit when I \ l k  is uncorrelated both the ML and LS variances 
given by (38) and (40) are equal and have a value 

We have calculated the errors E? given by (38), (40) and (43) for several values of the count- 
ing rate per coherence time, Ti,, and at a fixed y = Ti& = 0.1 and TT = lo4. Results are 
plotted in figure 1. It is not very surprising that, in this example the ML and LS methods 
have almost the same error even when the channels are correlated. After all, the two 
criteria of estimation are very similar. The set of curves (calculated for 20 channels) 
shows that the effect of correlation increases as Ti, increases. At Ti, = 10 and ii = 1 the 
estimation error calculated assuming uncorrelated channels is smaller than the correct 
estimation error by approximately a factor of 3 .  Jakeman et a1 (1971) have previously 
pointed out that the variance calculated assuming no correlation serves as a lower bound 
to the real variance. Our present results give exact values for the errors and thus help 
for a proper design of experiments. 

The errors plotted in figure 1 are calculated for 20 channels with time delays { x l }  
equally spaced between 0.1 and 2. We have found that the error is sensitive to the choice 
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1 1 , , , /  I I I 1 1 1 / 1 1  

t 
0.1 1.0 IO 100 

Average counts per coherence time ii, 

Figure 1. Error in estimating the bandwidth r by fitting to g, = 1 +exp(-2rlr,l) (44.1) 
as a function of the counting rate per coherence time E,, for TT = lo4, y = 0.1, and the 
indicated number of channels L :  full curves, correlation taken into consideration ; broken 
curve, channels assumed uncorrelated ; chain curve, infinite uncorrelated channels. Single 
channel estimates are calculated at a time delay x, = rls,l = 0.6. The 20 channel estimates 
are calculated for time delays {x,} = {0.1, 0.2,. . . ,2} .  

of {xi}. For example, if instead, the time delays are equally spaced between 0.1 and 3.9, 
the error at iic = 0.1 is47.6 % instead of35.5 %. In order to demonstrate the importance of 
choosing the right time delays we plot (figure 2) the error in estimating r using a single 
channel against its delay. In this case, (38), (40) and (43) all give the same result, 

E’ = A,,/4df. (44) 

It is seen from figure 2 that the error is minimum when x = 0.6. This is similar to results 
we have previously found (Saleh 1973) when using digital autocorrelators to estimate 
the spatial coherence length. The variation of the optimum error based on a single chan- 
nel with fiC is also plotted in figure 1. By comparing this to the set of error curves at 
L = 20, we can see how much gain in accuracy we can get by increasing the number of 
channels from 1 to 20. Also for comparison, the estimation error when infinite channels 
are used, is plotted. This is calculated under the assumption of uncorrelated channels. 

4.2. Lineshape with two parameters 

In this important example, we assume 

g, = 1 + C exp( -2 r l~J ) ,  (45) 

where r is the parameter to be estimated, but C is just an unknown parameter which 
appears because of the finite sampling time, the finite detector area, as well as clipping 
effects. These effects have been neglected when we derived our expression for the co- 
variance matrix of &. It would be extremely difficult to include such effects and it is 
likely that more than a single factor C would appear. But it seems reasonable (when 
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0. I 0.5 1.0 
Channel delay x,=Tq 

Figure 2. Percentage error in estimating the bandwidth r using a single channel ($4.1) 
as a function of the time delay X, = rlr,l for several counting rates ii,, lT = lo4 and y = 0.1. 

T T  >> 1) to include these effects in the function to be fitted g , ,  and approximately neglect 
them when calculating the covariance of its estimators. Taking 8, = r and O2 = C we 
can use the results of the previous section directly to find the estimation error. 

4.2.1. M L  estimator. Using (45) in (27) and (29) we get 

var(f) 1 R2 2 "1 ML =f.2=4 R l l R 2 2 - R 1 2 R 1 2 '  

where 

4.2.2. LS esrimator. Similarly, we use (45) in (32), (33) and (34)' and get 
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where 

x =  C j  i jxj  exp( -4xj) a, = (xf - 2) exp( - 2x,), Ci  ii exp( - 4xi) (49) 

Equation (48) is the same as that derived by Jakeman et a1 (1971) who considered only 
the case when A,,k is diagonal. In this case, the optimum weights if are proportional to 
l/Af,, and the ML and LS estimation errors given by (47) and (48) are equal. Now that we 
have found an expression for the covariance A, we are in a position to find more precise 
values for the estimation accuracies. However, we face the difficult problem of finding 
the optimum weights. We resort to numerical methods. By using the method of steepest 
descent, we have calculated the optimum weights and the accuracy of the LS estimators. 

Results are presented in figures 3 and 4, which show, for different values of fi,, the 
ML error, the LS error, and the error had the channels been uncorrelated. In figure 3, 
y = 0.01 and the errors are plotted for 20 channels taken such that {xf} = {0.1,0.15,. . . , 
1.05). Here also the error is sensitive to the choice of {xI}. For example, if instead, {xI} 
is chosen to be {0.5,0.51,. . . ,0.7} the error is 731 % instead of 149%, for f iC = 0.1 
(IT = lo4). That explains why our errors when assuming 20 uncorrelated channels 
are lower than the errors calculated by Jakeman et a1 (1971) under the same conditions 
but for a different set of {xf}. Therefore, for a certain counting rate, our expressions 
should be used to find out the optimum set of time delays. In figure 3, we also plot 
the error (calculated by Jakeman et a1 1971) when infinite uncorrelated channels are 
used and y = 0.01. In figure 4, y = 0.1 and the errors are plotted for 20 channels with 

i 

I 

01 10 10 100 
Average counts per coherence t ime IT, 

Figure 3. Percentage error in estimating the bandwidth r by fitting to g = 1 + C exp( - 2rlr,l) 
(64.2) as a function of the counting rate per coherence time n, .  The vertical axis is scaled 
by a factor (l/C), TT = lo4 and y = 0.01 : curve A, ML estimate based on 20 channels; 
curve B, LS estimate based on 20 channels; curve C, ML and LS estimates assuming 20 un- 
correlated channels; curve D, infinite uncorrelated channels. The 20 channel estimates are 
calculated for time delays such that { x ~ }  = {0.1, 0.15,. . . , 1.05). 
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0. I 1.0 10 100 
Average counts per coherence time ii, 

Figure 4. As in figure 3, but with y = 0.1 and the 20 channel estimates are calculated for 
time delays such that { x i ) .  = IO.1, 0.2,. . . ,2} .  

{xi} = {0.1,0.2, . , , ,2} .  If the channels are assumed uncorrelated we obtain the same 
errors as those calculated by Jakeman et a1 (1971) (slight differences may be attributed 
to our assumption that y << 1). 

The effect of correlation is clear in the graphs of figures 3 and 4. This effect increases 
as Ec increases. We also show in these graphs that the difference in the ML and LS errors 
is almost insignificant. 

It is of interest to see that the errors in estimating with an unknown C (84.2) are 
larger than those when C is known and equals 1 (§4.1), under the same conditions. 
Thus, ignoring our theoretical knowledge of the value of C leads to higher estimation 
errors. 

5. Conclusions 

We have found a general expression for the correlation between the readings of various 
channels of a photon counting digital autocorrelator. This expression is valid for any 
spectral distribution and is not limited to the lorentzian case. The knowledge of this 
correlation is necessary in estimating spectral parameters. Two data processing schemes 
which take into consideration this correlation have been analysed and general expressions 
for the estimation accuracies found. Following the ‘recipes’ we have given, any number 
of parameters that describe the field’s spectrum can be estimated and the estimation 
error determined. We have shown that for iiC > 1.0, it is important to take into account 
the channel correlations, and that the ML and LS estimates have almost the same error. 
Although we have only given two examples of simple spectra, there are many practical 
spectra with one or several parameters to which our general formalism can be directly 
applied. 
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Appendix 

In this appendix, we derive the general expression of the covariance of two channel 
readings. 

Let the optical field at the location of the point detector be described by its complex 
degree of coherence y 1 2  at two times t, and t , ,  and also by its higher order normalized 
intensity coherence functions glZ,,,, at points in time t , ,  t 2 ,  . . . , t ,  (see eg Mandel and 
Wolf 1965). Because we assume that the field is complex circular gaussian, the intensity 
coherence functions can be expanded in terms of y12 by the general rule 

g 1 2  ... M = c y l iY2j .  f .  YWk 
(ifjf ... fk)=(1,2 ,..., M) 

where the summation is taken over the indicated permutations. We also assume that 
the field is stationary which means that 

712  = XOl -t2).  ( A 4  

It is customary to choose the normalization ~ ( 0 )  = 1, and to define the bandwidth W 
such that 

('4.3) w-1 = sp Ix(t)12 dt, 
X 

and the effective coherence length z, = W-'. 
Now we consider the photodetector. Let n(m) be the number of photons counted in 

a time interval T centred around t,. We need the statistical moments of n(m). Ex- 
pressions of these moments are, in general, difficult (see, eg, Jakeman 1970), but with 
our assumption that %/t, = y << 1, the moments are related to the intensity coherence 
functions of the detected field by the following equations derived from the properties 
of the Poisson distribution : 

64.4) 

(A.5) 

E{ W)n(2)} = E2g1 2 + fia 1,2  > 

E{ n( )n(2)n(3)} = fi3g1 2 3 + fi2g1 38 1,2 + (2fi2 + fi)a 1 , 2 8 2 , 3  3 

E{n( 1 )n(2)43)n(4)} 

t 3  2 t 2  2 t,, 

= ~ 4 g ~ ~ ~ , + f i 3 g ~ ~ ~ 6 ~ , ~ + ( 2 f i 3 g ~ ~ , + f i 2 g ~ ~ ) 6 ~ , 2 6 ~ , ~  +(3f i3 +6fi2+fi) 

81,262,383,4? t4 2 t 3  2 t ,  2 t,, W.6) 

where E(n( t )}  = f i  is the average counting rate. 
Now we are in a position to findA$,0) and Ai:). We use the definitions of ( d o l }  and A 

given by (4) and (2). We relate the moments of n(m) to the intensity coherence functions 
using (A.4), (A.5) and (A.6), and relate these to the complex degree of coherence y ( t )  using 
(A.l) and (A.2). We change all our summations over m into integrations over t making 
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use of the assumption that Td << T ~ .  By using stationarity and the definition of W given 
by (A.3) we finally get the required general expressions of the covariance (12) and (13) 
as a function of ~(z ) ,  T, 5 and i. 
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